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Abstract
In this paper we extend the umbral calculus, developed to deal with difference
equations on uniform lattices, to q-difference equations. We show that many
properties considered for shift invariant difference operators satisfying the
umbral calculus can be implemented to the case of the q-difference operators.
This q-umbral calculus can be used to provide solutions to linear q-difference
equations and q-differential delay equations. To illustrate the method, we will
apply the obtained results to the construction of symmetry solutions for the
q-heat equation.

PACS numbers: 02.30.Ks, 02.30.Gp, 02.20.Uw
Mathematics Subject Classification: 39A10, 39A70, 33E30, 17B37

1. Introduction

Functions depending on q-variables appear in many physical problems. They enter in the
study of exactly solvable models in statistical mechanics [1], in conformal field theory [2] and
are thus very relevant for applications. For example, q-exponential distributions can be
obtained following Gibbs’ procedure from the stationary conditions on a certain generalized
entropy [3]. Standard q-exponential functions are also used to extrapolate between the Fermi–
Dirac (q = ∞) and Bose–Einstein (q = 0) statistics, passing through the Maxwell–Boltzmann
(q = 1) statistics [4].

In the case of difference equations, one had proved [5] that there exists a very powerful
method for systematically discretizing linear differential equations while preserving their
properties. Here we extend that method to the case of q-difference equations. We can show
that many properties considered in [5] for shift invariant difference operators satisfying the
umbral calculus [6–8] can be extended to the case of the q-difference operators considered in
[9–11]. For any q-difference operator this q-umbral calculus can be applied to provide solutions
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to linear q-difference equations and q-differential delay equations. As an illustration, we will
apply the method in the construction of symmetry solutions for the q-heat equation.

In section 2 we will define a q-difference equation in p independent variables and, for the
sake of simplicity, just one dependent variable and characterize the symmetry transformations
which will leave the equation invariant. Section 3 is devoted to the study of the properties of
q-calculus, showing the differences and the similarities between differential and q-difference
calculus. In particular, in section 4 we will discuss from an analytic and numerical point of
view the simplest q-functions. In section 5, we present the symmetries of a q-heat equation
using the correspondence between q-calculus and differential calculus. Section 6 is dedicated
to a few conclusive remarks.

2. q-Difference equations and its Lie symmetries

Let us consider a linear q-difference equation, involving, for notational simplicity, only
one scalar function u(x) of p independent variables x = (x1, x2, . . . , xp) evaluated at
a finite number of points of a nonuniform lattice characterized by positive parameters
q = (q1, q2, . . . , qp). Symbolically we write

EN

(
x, T au(x), T ai1 �xi1

u(x), T ai1 i2 �xi1
�xi2

u(x), . . . , T ai1 i2 ...iN �xi1
�xi2

. . . �xiN
u(x)

) = 0

a = (a1, a2, . . . , ap) (2.1)

where EN is some given function of its arguments, a, ai−1, ai1i2 , . . . are multiindices and
i1, i2, . . . , iN take values between 1 and p. By T au(x) we mean

T au(x) = T a1
x1

T a2
x2

. . . T
ap

xp
u(x)

where ai , with i = 1, 2, . . . , p, takes values between mi and ni , with mi, ni being fixed
integers (mi � ni), and the individual q-shift operator is given by

T ai

xi
u(x) = u

(
x1, x2, . . . , xi−1, q

ai

i xi, xi+1, . . . , xp

)
. (2.2)

The other q-shift operators T ai1 i2 , . . . are defined in a similar way. The operator �xi
is a

qi-difference operator such that when qi → 1 goes into the partial derivative with respect to
the xi variable.

To study the symmetries of equation (2.1) we will use the approach introduced in [12],
based on the formalism of evolutionary vector fields for differential equations [13]. As in the
case of differential equations, the symmetry group of a discrete equation is characterized by
those transformations of the equation that carry solutions u(x) into solutions ũ(x). Moreover,
we look only for those symmetries which in the continuous limit go over to Lie point
symmetries. In such a case the infinitesimal symmetry generators of the symmetry group
of equation (2.1) in evolutionary form have the general expression

Xe ≡ Q(x, u)∂u =
(

p∑
i=1

ξi

(
x, T au, {qj }pj=1

)
T b�xi

u − φ
(
x, T cu, {qj }pj=1

))
∂u (2.3)

with ξi

(
x, T au, {qj }pj=1

)
and φ

(
x, T cu, {qj }pj=1

)
such that in the continuous limit go over

ξi(x, u) and φ(x, u), respectively (the infinitesimal generators of the corresponding Lie point
symmetries).

As equation (2.1) is of order N in the difference operators, the N-th prolongation of Xe

will verify the invariance condition

prNXeEN |EN=0 = 0. (2.4)

Note that the expressions involved in (2.3), (2.4) are analogous to those of the continuous case
[13] and can be derived in a similar way (for more details see [12]).
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The symmetries of equation (2.1) are given by condition (2.4), which give rise to a set of
determining equations for ξi and φ.

The formalism presented above may become quite involved. The situation is simpler for
linear equations where we can use a reduced ansatz. In this case, we can assume that the
evolutionary vectors (2.3) have the form

Xe =
(∑

i

ξi(x, T a, qj )�xi
u − φ(x, T a, qj )u

)
∂u. (2.5)

The vector fields, Xe, can be written as Xe = (X̂u)∂u with

X̂ =
∑

i

ξi(x, T a, qj )�xi
− φ(x, T a, qj ). (2.6)

However, in general, the resulting symmetries span only a subalgebra of the whole Lie
symmetry algebra (see [12]). If the system is nonlinear the simplification (2.5) is too restrictive
and is almost impossible to get a non-trivial result as, a priori, we need to consider an infinite
number of terms.

3. q-Calculus

In this section we will present the generalities of q-calculus [14]. We will restrict ourselves
for the sake of simplicity to one independent variable. Moreover, in the following we will
consider just the simplest q-derivatives (at the right, at the left and symmetric, respectively)

�+
x = 1

q+
x x

(Tx − 1) �−
x = 1

q−
x x

(
1 − T −1

x

)
�s

x = 1

qs
xx

(
Tx − T −1

x

)
(3.1)

where qx is a real dilation positive parameter associated with the variable x and qi
x, i = ±, s,

are given by

q+
x = qx − 1 q−

x = 1 − 1

qx

qs
x = qx − 1

qx

.

The operator Tx is a q-dilation operator

Txf (x) = f (qxx) T −1
x f (x) = f (x/qx) (3.2)

the one-dimensional reduction of the one defined in equation (2.2). Formally we have

Tx = qx∂x

x = elog qxx∂x . (3.3)

When we do not specify which q-derivative we are using we will write just �x .
It is easy to see that, due to the form of the q-derivative considered (3.1), the shift operator

and the q-derivatives do not commute. So, they do not satisfy one of the basic conditions in
the umbral calculus [6, 7]. We can, however, define the q-umbral calculus in a way similar to
the standard umbral calculus avoiding the above requirement.

We can easily find that

[�x, x] =


Tx for �+

x

T −1
x for �−

x

1

1 + qx

(
qxTx + T −1

x

)
for �s

x.

(3.4)

If instead of the standard commutator, we consider the q-commutators defined as [A,B]q+ =
AB − qAB and [A,B]q− = AB − (1/q)AB, we have

[�x, x]q = 1. (3.5)
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This result cannot be extended to the case of the symmetric q-derivative �s
x . Moreover, since

the expression (3.5) does not satisfy the Leibniz rule, the determining equations (2.4) become
very complicate. So, in the following we will consider just standard commutators.

In the spirit of umbral calculus [7, 8], we can define an operator βx , depending on Tx ,
such that

[βx, Tx] = 0 [�x, βxx] = 1.

For the three q-derivatives introduced above (3.1) we can find the following explicit expressions
of βx :

β+
x = (qx − 1)x∂x(Tx − 1)−1 = q+

x x∂x(Tx − 1)−1

β−
x =

(
1 − 1

qx

)
x∂x

(
1 − T −1

x

)−1 = q−
x x∂x

(
1 − T −1

x

)−1
(3.6)

βs
x =

(
qx − 1

qx

)
x∂x

(
Tx − T −1

x

)−1 = qs
xx∂x

(
Tx − T −1

x

)−1
.

It is easy to prove that in all the above cases βxx�x = x∂x . However, this may not be the
only possible definition of βx . Let us note that, due to the presence of the ∂x operator in
the definition of βx , the q-umbral correspondence of an explicitly x-dependent differential
equation will give rise to a q-differential delay equation [15].

We can reexpress the functions βx as an infinite series in terms of the shift operators, thus
proving that they commute with the shift operators. From (3.3) we get

x∂x = 1

log qx

ln Tx = 1

log qx

ln(1 + (Tx − 1))= 1

log qx

∞∑
n=1

(−1)n+1 (Tx − 1)n

n
.

Consequently

β+
x = q+

x

log q+
x

∞∑
n=0

(−1)n
(Tx − 1)n

n + 1
.

Similarly from

x∂x = − 1

log qx

ln T −1
x = − 1

qx − 1
ln

(
1 +

(
T −1

x − 1
)) = 1

log qx

∞∑
n=1

(−1)n

(
T −1

x − 1
)n

n

we get

β−
x = q−

x

log q+
x

∞∑
n=0

(−1)n

(
T −1

x − 1
)n

n + 1
= q−

x

log q+
x

∞∑
n=0

(
1 − T −1

x

)n

n + 1
.

Finally, for the symmetric derivative, as

Tx − T −1
x

2
= sinh(log qxx∂x)

we find that

x∂x = 1

log qx

sinh−1 Tx − T −1
x

2
= 1

log qx

∞∑
n=1

(−1)n+1Cn

(
Tx − T −1

x

)2n−1

22n−1

where the coefficients Cn are given by

C1 = 1 Cn =
∏n

k=2 (2k − 3)

(2n − 1)
∏n

k=2 (2k − 2)
∀n � 2.
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So, we have

βs
x = qs

x

log qx

∞∑
n=0

(−1)nCn+1

(
Tx − T −1

x

)2n

22n+1
.

For functions f and g, entire in βxx, the Leibniz rule takes the form

[�x, fg] = [�x, f ]g + f [�x, g]. (3.7)

Note that the formal expression (3.7) of Leibniz’s rule is the same as in the case of discrete
derivatives [5]. For the sake of brevity we will write Dxf := [�x, f ]. The expression (3.7)
is operatorial, if we want to have a functional expression we need to project it by acting on a
constant function as 1. In this case, however, the Leibniz rule (3.7) is a trivial identity.

Taking into account Leibniz’s rule (3.7) we can prove the following property

[�x, (βxx)n] = Dx(βxx)n = n(βxx)n−1 ∀n ∈ N (3.8)

thus showing that (βxx)n are basic polynomials for the operator Dx , and, when projected, for
�x . So, we have defined an operator Dx which on functions of βxx have the same properties
as the normal derivatives ∂x on functions of x. Therefore, we can say, roughly speaking, that
whatsoever is valid for differential equations may also be valid for the Dx operators, provided
we substitute formally in the corresponding entire functions the variable x by βxx. This general
idea is the content of the q-umbral correspondence. In the case of linear equations, when the
derivations act linearly on functions, the projection procedure will transform the operator Dx

into �x and we will get q-difference equations.
Let us analyse the meaning of the operators (βxx)n for the three q-derivative operators.

Since

(Tx − 1)x = x(qxTx − 1) (Tx − 1)−1x = x(qxTx − 1)−1(
1 − T −1

x

)
x = x

(
1 − 1

qx

T −1
x

) (
1 − T −1

x

)−1
x = x

(
1 − 1

qx

T −1
x

)−1

(
Tx − T −1

x

)
x = x

(
qxTx − 1

qx

T −1
x 1

) (
Tx − T −1

x

)−1
x = x

(
qxTx − 1

qx

T −1
x

)−1

we get

β+
x x = q+

x x(1 + x∂x)(qxTx − 1)−1

β−
x x = q−

x x(1 + x∂x)

(
1 − 1

qx

T −1
x

)−1

(3.9)

βs
xx = qs

xx(1 + x∂x)

(
qxTx − 1

qx

T −1
x

)−1

.

Let us stress once more that these expressions have an operator character. In order to have a
functional nature we have to project them by acting on a constant. So, taking into account that
Tx1 = 1 and T −1

x 1 = 1, we have

βxx1 = x. (3.10)

Starting from (3.10) we can demonstrate by induction that

(βxx)n1 = (βxx)(βxx) . . . (βxx)1 = n!

[n]q!
xn ∀n ∈ N

+

where

[n]+
q = qn − 1

q − 1
[n]−q = 1 − q−n

1 − q−1
[n]sq = q

q2 − 1

q2n − 1

qn
= 1

qn−1

n∑
k=1

q2k−2
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and

[n]q! = [n]q[n − 1]q . . . [1]q .

Consequently, if we consider an entire function such as the exponential, we have

eλβxx1 =
∞∑

n=0

λn

n!
(βxx)n1 =

∞∑
n=0

λn xn

[n]q!
.

So, by the q-umbral correspondence, the exponential function becomes

eλx =
∞∑

n=0

λn xn

n!
−→ eλβxx1 =

∞∑
n=0

λn xn

[n]q!
. (3.11)

Let us consider the Gaussian function that we will be using later on. It takes the form

e−λ(βxx)2
1 =

∞∑
n=0

(−λ)n

n!
(βxx)2n1 =

∞∑
n=0

(−λ)n
(2n)!

n!

x2n

[2n]q!
. (3.12)

Moreover, for an arbitrary point x0 and an arbitrary constant a, we can prove that

Dx(βxx + x0)
a = a(βxx + x0)

a−1 ∀a ∈ R.

The proof is based on the idea that the differential equation

(x + x0)∂xf = af

whose solution is f = (x + x0)
a can be transformed by the q-umbral correspondence into the

discrete equation

(βxx + x0)Dx(βxx + x0)
a = a(βxx + x0)

a

which has formally the same solution in power series (substituting the x of the solution of the
continuous equation by βxx in the discrete case). Indeed the expression

(x + x0)
a =

∞∑
n=0

xa−n
0

∏n−1
k=0(a − k)

n!
xn

is replaced by

(βxx + x0)
a =

∞∑
n=0

xa−n
0

∏n−1
k=0(a − k)

n!
(βxx)n

and, after projection, we get

(βxx + x0)
a1 =

∞∑
n=0

xa−n
0

∏n−1
k=0(a − k)

n!
(βxx)n1 =

∞∑
n=0

xa−n
0

∏n−1
k=0(a − k)

[n]q!
xn.

4. q-Umbral functions

In this section we will examine in detail some basic discrete functions obtained by the
q-umbral method. There are some points to be investigated: (i) as the q-umbral correspondence
applies to series expansions, it is important to know the radius of convergence for the resulting
series; (ii) it is of interest in physical applications to keep track of the modifications that the
q-umbral calculus introduce in the behaviour of the continuous functions, in particular on their
asymptotic behaviour.

In the following examples we shall consider as q-derivative operator the right �+ and
the symmetric �s q-derivative. We will analyse here two of the functions which appear in
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the symmetry reduction of the heat equation, the exponential (3.11) and Gaussian (3.12)
functions, which exemplify the kind of results one can obtain from the q-umbral calculus for
entire functions. These functions are described by the ordinary differential equations

dfe(x)

dx
= λfe(x) (4.1)

and

dfg(x)

dx
= −2λxfg(x) (4.2)

whose solutions, up to constant factors, are given by fe(x) = eλx and fg(x) = e−λx2
,

respectively. We will deal with the q-umbral analogues of equations (4.1), (4.2) and look for
their discrete solutions.

4.1. q-Exponential functions

From the q-umbral correspondence the difference equation satisfied by the q-exponential
Eq(x) is (see equation (4.1))

�Eq(x) = λEq(x). (4.3)

We will consider always the domain x > 0. The negative values of x can be obtained by
changing the sign of λ.

4.1.1. The right exponential. The difference equation (4.3) becomes

Eq(qx) = [1 + (q − 1)λx]Eq(x). (4.4)

The solution can be expressed as a product

Eq(q
nx0) =

n−1∏
j=0

[1 + (q − 1)λqjx0]Eq(x0) n ∈ N
+ (4.5)

Eq(q
−nx0) =

n∏
j=1

1

[1 + (q − 1)λq−j x0]
Eq(x0) n ∈ N

+. (4.6)

We have four different types of behaviour of the q-exponential function according to the values
of q and λ, namely q ≷ 1 and λ ≶ 0.

• q > 1

(i) Let us at first consider the case λ > 0. The recurrence of the difference equation
implies that Eq(x) is a monotonously increasing function of x.

By the q-umbral correspondence the solution of the equation (4.1) can also be
obtained by q-umbralizing the series representation of the exponential function. In
such a case we have

Ẽq(x) =
∞∑

k=0

(λx)k(q − 1)k∏k
j=1(q

j − 1)
. (4.7)

This solution converges for all x > 0 so that it gives the unique (up to a constant)
solution (4.5), (4.6) of (4.4) in all the domain.



3466 D Levi et al

1 2 3 4 5

2.5

5

7.5

10

12.5

15

17.5

20

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30

-0.001

-0.00075

-0.0005

-0.00025

0.00025

0.0005

0.00075

0.001

(a)

(c)

(b)

Figure 1. (a) Plot of the exponential function (continuous line) and right q-exponential function
(dashed line) for λ = 1 and q = 1.3. (b) Plot of the exponential function (continuous line) and
right q-exponential function (dashed line) for λ = −1 and q = 1.3. (c) Enlarged plot of the
exponential function (continuous line) and right q-exponential function (dashed line) for λ = −1
and q = 1.3.

(ii) In the case λ < 0 we see that the recurrence leads to a decreasing function as long
as 1 − (q − 1)λx > 0. However, for further values of x, where 1 − (q − 1)λx < 0
the function oscillates with higher diverging amplitudes. For the particular point
x0 = 1/(q − 1)|λ| we have Eq(qx0) = 0, therefore also Eq(q

nx0) = 0,∀n ∈ N.
This means that in the q-lattice xn = x0q

n, n ∈ Z, the q-exponential decreases for
n negative, i.e. for values of x less than x0 and vanishes after x0, for n positive,
avoiding the oscillations. As q → 1 the point x0 → ∞, so that the q-exponential
becomes closer and closer to the (continuous) exponential. The q-umbral function
(4.7) displays these features as it is shown in figure 1.

• q < 1

(i) For λ > 0 and for large values of n one can always find [1+(q−1)λqnx0] > 0, and the
solution is a monotonous increasing function. For x0 such that [1 + (q − 1)λx0] = 0,
the solution is not defined. In fact in that point it diverges and, consequently, also
diverges in the lattice points x0q

−n, n ∈ N. For the points xj = x0q
j such that

[1 + (q − 1)λqjx0] < 0, the solution oscillates, changing its sign alternatively, with
divergences at the separating points. The amplitude of the oscillations tends to zero,
as x → +∞.

(ii) For λ < 0 the solution is a monotonously decreasing function which, in the limit
x → 0, tends to zero.

The radius of convergence of the q-umbral series is given by R = 1/|q − 1||λ|.
The q-umbral function Ẽq(x) has two vertical asymptotes at the symmetric points
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Figure 2. (a) Plot of the exponential function (continuous line) and right q-exponential function
(dashed line) and the solution of equation (4.4) given by the points, for λ = −1 and q = 0.5.
(b) Plot of the exponential function (continuous line) and right q-exponential function (dashed line)
and the solution of equation (4.4) given by the points, for λ = 1 and q = 0.5. (c) Enlarged plot of
the solution of equation (4.4), for λ = 1 and q = 0.5.

x = ±R. Therefore, inside the range of convergence (where there are no oscillations)
the q-umbral function reproduces correctly the solution Eq(x), but for x > |R|, where
it does not converge, it supplies no information about the solution. These features
are illustrated in figure 2.

4.1.2. The symmetric exponential. In this case the difference equation (4.3) becomes a
three-term relation given by

Es
q(qx) = (q − 1/q)λxEs

q(x) + Es
q(x/q). (4.8)

There are two independent solutions for the symmetric q-exponential. It is not necessary to
distinguish the cases q > 1 and q < 1 because they play a symmetric role. For λ > 0 the
relation (4.8) gives growing functions in the x variable. For λ < 0 the function initially is
decreasing but after a certain point the discrete solutions start to oscillate.

The q-umbral solution to the recurrence (4.8) is given by

Ẽs
q(qx) =

∞∑
k=0

(λx)k(q − 1/q)k∏k
j=1(q

j − 1/qj )
. (4.9)

This series converges for all x, so that it provides one of the solutions to the recurrence (4.8),
and in the limit q → 1 it goes into the continuous exponential. The behaviour of the umbral
Ẽs

q presents the features of the recurrence above described, i.e. it approaches the continuous
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Figure 3. (a) Plot of the exponential function (continuous line) and symmetric q-exponential
function (dashed line), for λ = 1 and q = 1.3. (b) Plot of the exponential function (continuous
line) and symmetric q-exponential function (dashed line), for λ = −1 and q = 1.3. (c) Enlarged
plot of the exponential function (continuous line) and symmetric q-exponential function (dashed
line), for λ = −1 and q = 1.3.

exponential up to the first zero (for λ < 0) but it departs wildly oscillating beyond that point
(see figure 3).

Comparing figures 1 and 3, we can see that the symmetric exponential function gives a
better approximation than the right exponential. However, it can be easily shown that there is
no initial condition for equation (4.8) such that the symmetric q-exponential vanishes for all
subsequent points, as it was the case for the right exponential. So, there is no way to avoid the
oscillations.

4.2. q-Gaussians

In this case equation (4.2), which has as a solution the Gaussian function, becomes the
q-difference equation

�Gq,λ(x) = −λβx xGq,λ(x). (4.10)

In the following we will discuss briefly the cases of the right and symmetric q-Gaussians
solutions.

4.2.1. The right Gaussian. The difference equation (4.10) becomes a three-term recurrence
equation

q−1G+
q,λ(q

2x) − (q−1 + 1)G+
q,λ(qx) + G+

q,λ(x) = −λ(q − 1)2x(x2∂x + 1)G+
q,λ(x). (4.11)
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Figure 4. (a) Plot of the Gaussian function (continuous line) and right q-Gaussian function (dashed
line), for λ = 1 and q = 1.3. (b) Enlarged plot of the Gaussian function (continuous line) and
right q-Gaussian function (dashed line), for λ = 1 and q = 1.3.

Equation (4.11) is a differential-difference equation. So, it is quite difficult to find directly
the solutions or even to discuss the general behaviour of them. We will assume, as shown in
the case of the exponential function, that whenever the q-umbral series is convergent it will
converge to the solution of the difference equation.

The q-umbral series supplies a solution to equation (4.11), given by

G̃+
q,λ(x) =

∞∑
k=0

(−λx2)k2k(2k − 1)!(q − 1)2k∏2k
j=1(q

j − 1)
. (4.12)

For q > 1 the series converges for all x, but for q < 1 the series diverges everywhere (for
x �= 0). Some plottings of G̃+

q,λ are shown in figure 4. The behaviour is similar to that of
the q-exponential, that is whenever we have a decreasing function of x, at a certain point it
vanishes and beyond that point it starts to oscillate with increasing amplitudes, thus departing
from the behaviour of the continuous Gaussian function.

4.2.2. The symmetric Gaussian. The recurrence relation of equation (4.10) for this case is
an even more involved differential difference equation than equation (4.11), so we prefer not
to write it down here. The q-umbral series solution is given by

G̃s
q,λ(x) =

∞∑
k=0

(−λx2)k(2k)!(q − 1/q)2k

k!
∏2k

j=1(q
j − 1/qj )

. (4.13)

The radius of convergence is R = ∞. For the symmetric Gaussian function we have similar
results as for the right Gaussian, which, however, are valid for any value of q (see figure 5).

In conclusion we can say that the decreasing asymptotic behaviour of the continuous
functions is not fully reproduced by the corresponding umbral q-functions. The discrete
functions approach the continuous ones up to the point where they vanish. Beyond this point
they oscillate going far away from the continuous analogues. Therefore, a good parameter
to measure the radius of the domain where the q-functions imitate the continuous functions
is given by the first zero in the asymptotic region. This point is plotted in figure 6 for the
q-exponentials and the q-Gaussians functions.

From figure 6 we see that the domain of convergence of the q-exponential to the
exponential function increases in a monotonic continuous way as q → 1 for the right
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Figure 5. (a) Plot of the Gaussian function (continuous line) and symmetric q-Gaussian function
(dashed line), for λ = 1 and q = 1.3. (b) Enlarged plot of the Gaussian function (continuous line)
and symmetric q-Gaussian function (dashed line), for λ = 1 and q = 1.3.
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Figure 6. (a) Plot of the position of first zero of the right q-exponential as function of q for λ = −1.
(b) Plot of the position of first zero of the symmetric q-exponential as function of q for λ = −1.
(c) Plot of the position of first zero of the right q-Gaussian as function of q for λ = 1. (d ) Plot of
the position of first zero of the symmetric q-Gaussian as function of q for λ = 1.

exponential, while in the symmetric case there are discontinuities for small values of q.
The situation is slightly different in the case of the Gaussian function. In this case there is a
minimum value of the first zero, q0(λ), such that for 1 < q0(λ) < q < ∞ also the domain
decreases. Below q0 the domain increases as q → 1. In the case of the symmetric Gaussian
function we have again that for q small the function is discontinuous.
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5. The discrete heat q-equation and its symmetries

Taking into account the q-umbral correspondence

∂x → �x x → βxx (5.1)

we obtain from any linear constant coefficient differential equation an operator equation which,
when projected, gives us a q-discrete equation. In the case of the heat equation we get(

∂t − ∂2
xx

)
u = 0 �⇒ (�t − �xx)u = 0. (5.2)

Let us construct the symmetries for the q-discrete equation (5.2). We can apply the q-umbral
correspondence also to the determining equations for the symmetry generators (2.6),

Xe ≡ Q∂u = (τ�t + ξ�xu + f u)∂u

because they are linear in the coefficients ξ, τ and f . Since equation (5.2) is a second-
order difference equation it is necessary to use the second prolongation. The corresponding
determining equation is

�T
t Q − �T

xxQ
∣∣
�xxu=�tu

= 0 (5.3)

where �T means a total derivative [12]. Equation (5.3) reads

�t(ξ�xu) + �t(τ�tu) + �t(f u) − [�xx(ξ�xu) + �xx(τ�tu) + �xx(f u)]|�xxu=�tu = 0.

(5.4)

Making use of the Leibniz rule, from equation (5.4) we obtain the following set of equations
(see also [16])

Dx(τ) = 0 Dt(τ) − 2Dx(ξ) = 0

Dt(ξ) − Dxx(ξ) − 2Dx(f ) = 0 Dt(f ) − Dxx(f ) = 0
(5.5)

where Dx(τ)1 = [�x, τ ]1 = �xτ . Moreover,

Dxx(f )1 = Dx(Dx(f ))1 = [�x, [�x, f ]]1 = �x�xf.

Note that these determining equations have formally the same expression for all the
q-derivatives, for the continuous derivatives and also in the discrete case studied in [5].
From equation (5.1), the solution of this system (5.5) is

τ = τ2(βt t)
2 + τ1(βt t) + τ0

ξ = 1
2 (τ1 + 2τ2(βt t))(βxx) + ξ1(βt t) + ξ0

f = 1
4τ2(βxx)2 + 1

2τ2(βt t) + 1
2ξ1(βxx) + γ

(5.6)

where τ0, τ1, τ2, ξ0, ξ1 and γ are arbitrary functions of Tx, Tt and of qx and qt . By a suitable
choice of these functions, we get the following representation of the symmetries

P
q

0 = (�tu)∂u

P
q

1 = (�xu)∂u

Wq = u∂u

Bq = (2(βt t)�tu + (βxx)�xu)∂u

Dq = (
2(βt t)�tu + (βxx)�xu + 1

2u
)
∂u

Kq = ((βt t)
2�tu + (βt t)(βxx)�xu + 1

4 (βxx)2u + 1
2 (βt t)u)∂u

(5.7)

that close into a six-dimensional Lie algebra, isomorphic to the symmetry algebra of the
continuous heat equation. Another realization of this algebra was obtained in [17], by a
different procedure and used to find symmetric solutions of the discrete heat equation.
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Now we use the obtained symmetries to construct some solutions of the q-discrete
equation (5.2).

Taking into account the symmetries P
q

0 and P
q

1 , choosing the q-parameters in such a way
that qx = qt = q and using the variable separation method [18], we can write the solution of
the q-heat equation as

u(βt t, βxx) = v(βt t)w(βxx).

Then equation (5.2) reads

(�tv(βt t))w(βxx) − v(βt t)(�xx)w(βxx) = 0. (5.8)

From equation (5.8) we deduce that the functions v and w must satisfy the following equations:

�tv(βt t) = λv(βt t) �xw(βxx) =
√

λw(βxx). (5.9)

Taking into account equation (4.3), we have

v(t) = v(βt t)1 = eλβt t1 =
∞∑

n=0

λntn

[n]q!
= eλt

q

and

w(x) = w(βxx)1 = e
√

λβxx1 =
∞∑

n=0

λn/2xn

[n]q!
= e

√
λx

q .

Hence, the solution will be

u(t, x) = eλt
q e

√
λx

q .

Let us consider now the symmetry reduction with respect to Bq [13]. In this case
introducing the appropriate symmetry variable η = βxx√

βt t
we get

u(x, t) = u0√
βt t

exp

[
− (βxx)2

4βt t

]
1. (5.10)

The solution (5.10) of the q-heat equation is meaningful as long as we are considering positives
times and the value t = 0 is out of our time domain. In such a situation the solution (5.10)
is entire and can be represented as a Taylor series and, thus, q-functions like the Gaussian or
the square root are meaningful. The method would not provide a meaningful q-function if we
would consider all values of t. However, in t = 0 also the boost solution of the continuous
heat equation would be singular and, thus, meaningless.

6. Conclusions

In this paper we presented a q-extension of the umbral calculus and used it to provide solutions
of linear q-difference and q-differential difference equations. In this way we obtained solutions
which have the correct continuous limit.

The discretization procedure given by the recipe ∂x −→ �x, x −→ βxx also works well
for linear equations in the case of q-shifts operators. In particular, it preserves the classical
Lie symmetries which are described by linear equations.

We study in detail the behaviour of the q-exponential and q-Gaussian functions and show
their range of validity which depends on the q-discrete derivative operator under consideration.
The domain of convergence of the q-function to the continuous function is characterized in
terms of the zeros of the q-function. The results are usually better in the case of symmetric
q-derivative operators.

Further work is in progress on the complete description of a coherent q-umbral calculus
and a comparison of the discrete and q-discrete solutions.
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